Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuromodulation ; 27(2): 343-352, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36609088

RESUMO

OBJECTIVES: There are limited treatment options for female sexual dysfunction (FSD). Percutaneous tibial nerve stimulation (PTNS) has shown improvements in FSD symptoms in neuromodulation clinical studies, but the direct effects on sexual function are not understood. This study evaluated the immediate and long-term effects of PTNS on sexual motivation and receptivity in a rat model of menopausal women. Our primary hypothesis was that long-term PTNS would yield greater changes in sexual behavior than short-term stimulation. MATERIALS AND METHODS: In two experiments, after receiving treatment, we placed ovariectomized female rats in an operant chamber in which the female controls access to a male by nose poking. We used five treatment conditions, which were with or without PTNS and no, partial, or full hormone priming. In experiment 1, we rotated rats through each condition twice with behavioral testing immediately following treatment for ten weeks. In experiment 2, we committed rats to one condition for six weeks and tracked sexual behavior over time. We quantified sexual motivation and sexual receptivity with standard measures. RESULTS: No primary comparisons were significant in this study. In experiment 1, we observed increased sexual motivation but not receptivity immediately following PTNS with partial hormone priming, as compared with priming without PTNS (linear mixed effect models; initial latency [p = 0.34], inter-interval latency [p = 0.77], nose poke frequency [p = 0.084]; eight rats). In experiment 2, we observed trends of increased sexual receptivity (linear correlation for weekly group means; mounts [p = 0.094 for trendline], intromissions [p = 0.073], lordosis quotient [p = 0.58], percent time spent with a male [p = 0.39], decreased percent time alone [p = 0.024]; four rats per condition), and some sexual motivation metrics (linear correlation for weekly group means; nose pokes per interval [p = 0.050], nose poke frequency [p = 0.039], decreased initial latency [p = 0.11]; four rats per condition) when PTNS was applied long-term with partial hormone priming, as compared with hormone-primed rats without stimulation. CONCLUSIONS: PTNS combined with hormone priming shows potential for increasing sexual motivation in the short-term and sexual receptivity in the long-term in rats. Further studies are needed to examine variability in rat behavior and to investigate PTNS as a treatment for FSD in menopausal women.


Assuntos
Estimulação Elétrica Nervosa Transcutânea , Humanos , Masculino , Feminino , Ratos , Animais , Comportamento Sexual , Nervo Tibial/fisiologia , Motivação , Hormônios , Resultado do Tratamento
2.
J Neural Eng ; 21(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38081060

RESUMO

Objective.To evaluate the signal quality of dry MXene-based electrode arrays (also termed 'MXtrodes') for electroencephalographic (EEG) recordings where gelled Ag/AgCl electrodes are a standard.Approach.We placed 4 × 4 MXtrode arrays and gelled Ag/AgCl electrodes on different scalp locations. The scalp was cleaned with alcohol and rewetted with saline before application. We recorded from both electrode types simultaneously while participants performed a vigilance task.Main results.The root mean squared amplitude of MXtrodes was slightly higher than that of Ag/AgCl electrodes (.24-1.94 uV). Most MXtrode pairs had slightly lower broadband spectral coherence (.05 to .1 dB) and Delta- and Theta-band timeseries correlation (.05 to .1 units) compared to the Ag/AgCl pair (p< .001). However, the magnitude of correlation and coherence was high across both electrode types. Beta-band timeseries correlation and spectral coherence were higher between neighboring MXtrodes in the array (.81 to .84 units) than between any other pair (.70 to .75 units). This result suggests the close spacing of the nearest MXtrodes (3 mm) more densely sampled high spatial-frequency topographies. Event-related potentials were more similar between MXtrodes (ρ⩾ .95) than equally spaced Ag/AgCl electrodes (ρ⩽ .77,p< .001). Dry MXtrode impedance (x̄= 5.15 KΩ cm2) was higher and more variable than gelled Ag/AgCl electrodes (x̄= 1.21 KΩ cm2,p< .001). EEG was also recorded on the scalp across diverse hair types.Significance.Dry MXene-based electrodes record EEG at a quality comparable to conventional gelled Ag/AgCl while requiring minimal scalp preparation and no gel. MXtrodes can record independent signals at a spatial density four times higher than conventional electrodes, including through hair, thus opening novel opportunities for research and clinical applications that could benefit from dry and higher-density configurations.


Assuntos
Benchmarking , Eletroencefalografia , Nitritos , Elementos de Transição , Humanos , Eletroencefalografia/métodos , Impedância Elétrica , Eletrodos , Etanol
3.
eNeuro ; 10(9)2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37558464

RESUMO

EEG phase is increasingly used in cognitive neuroscience, brain-computer interfaces, and closed-loop stimulation devices. However, it is unknown how accurate EEG phase prediction is across cognitive states. We determined the EEG phase prediction accuracy of parieto-occipital alpha waves across rest and task states in 484 participants over 11 public datasets. We were able to track EEG phase accurately across various cognitive conditions and datasets, especially during periods of high instantaneous alpha power and signal-to-noise ratio (SNR). Although resting states generally have higher accuracies than task states, absolute accuracy differences were small, with most of these differences attributable to EEG power and SNR. These results suggest that experiments and technologies using EEG phase should focus more on minimizing external noise and waiting for periods of high power rather than inducing a particular cognitive state.


Assuntos
Eletroencefalografia , Descanso , Humanos , Eletroencefalografia/métodos , Razão Sinal-Ruído , Descanso/fisiologia , Cognição , Encéfalo/fisiologia
4.
Front Behav Neurosci ; 17: 1176865, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37292166

RESUMO

Recent studies suggest that attention is rhythmic. Whether that rhythmicity can be explained by the phase of ongoing neural oscillations, however, is still debated. We contemplate that a step toward untangling the relationship between attention and phase stems from employing simple behavioral tasks that isolate attention from other cognitive functions (perception/decision-making) and by localized monitoring of neural activity with high spatiotemporal resolution over the brain regions associated with the attentional network. In this study, we investigated whether the phase of electroencephalography (EEG) oscillations predicts alerting attention. We isolated the alerting mechanism of attention using the Psychomotor Vigilance Task, which does not involve a perceptual component, and collected high resolution EEG using novel high-density dry EEG arrays at the frontal region of the scalp. We identified that alerting attention alone is sufficient to induce a phase-dependent modulation of behavior at EEG frequencies of 3, 6, and 8 Hz throughout the frontal region, and we quantified the phase that predicts the high and low attention states in our cohort. Our findings disambiguate the relationship between EEG phase and alerting attention.

5.
Int Urogynecol J ; 33(12): 3543-3553, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35254469

RESUMO

INTRODUCTION AND HYPOTHESIS: Human menopause transition and post-menopausal syndrome, driven by reduced ovarian activity and estrogen levels, are associated with an increased risk for symptoms including but not limited to sexual dysfunction, metabolic disease, and osteoporosis. Current treatments are limited in efficacy and may have adverse consequences, so investigation for additional treatment options is necessary. Previous studies have demonstrated that percutaneous tibial nerve stimulation (PTNS) and electro-acupuncture near the tibial nerve are minimally invasive treatments that increase vaginal blood perfusion or serum estrogen in the rat model. We hypothesized that PTNS would protect against harmful reproductive and systemic changes associated with menopause. METHODS: We examined the effects of twice-weekly PTNS (0.2 ms pulse width, 20 Hz, 2× motor threshold) under ketamine-xylazine anesthesia in ovariectomized (OVX) female Sprague-Dawley rats on menopause-associated physiological parameters including serum estradiol, body weight, blood glucose, bone health, and vaginal blood perfusion. Rats were split into three groups (n = 10 per group): (1) intact control (no stimulation), (2) OVX control (no stimulation), and (3) OVX stimulation (treatment group). RESULTS: PTNS did not affect serum estradiol levels, body weight, or blood glucose. PTNS transiently increased vaginal blood perfusion during stimulation for up to 5 weeks after OVX and increased areal bone mineral density and yield load of the right femur (side of stimulation) compared to the unstimulated OVX control. CONCLUSIONS: PTNS may ameliorate some symptoms associated with menopause. Additional studies to elucidate the full potential of PTNS on menopause-associated symptoms under different experimental conditions are warranted.


Assuntos
Glicemia , Densidade Óssea , Humanos , Ratos , Feminino , Animais , Ratos Sprague-Dawley , Nervo Tibial/fisiologia , Menopausa , Estrogênios , Peso Corporal , Estradiol , Perfusão , Ovariectomia/efeitos adversos
6.
Sci Transl Med ; 13(612): eabf8629, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34550728

RESUMO

Soft bioelectronic interfaces for mapping and modulating excitable networks at high resolution and at large scale can enable paradigm-shifting diagnostics, monitoring, and treatment strategies. Yet, current technologies largely rely on materials and fabrication schemes that are expensive, do not scale, and critically limit the maximum attainable resolution and coverage. Solution processing is a cost-effective manufacturing alternative, but biocompatible conductive inks matching the performance of conventional metals are lacking. Here, we introduce MXtrodes, a class of soft, high-resolution, large-scale bioelectronic interfaces enabled by Ti3C2 MXene (a two-dimensional transition metal carbide nanomaterial) and scalable solution processing. We show that the electrochemical properties of MXtrodes exceed those of conventional materials and do not require conductive gels when used in epidermal electronics. Furthermore, we validate MXtrodes in applications ranging from mapping large-scale neuromuscular networks in humans to cortical neural recording and microstimulation in swine and rodent models. Last, we demonstrate that MXtrodes are compatible with standard clinical neuroimaging modalities.


Assuntos
Fenômenos Eletrofisiológicos , Eletrofisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...